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Note 

The Method of Differential Areas for Computing 
Crystal Symmetry Independent Density of States Spectra* 

The differential area method for calculating joint density of states spectra given any 
electron or phonon dispersion relation is explained. Examples of this procedure are to 
nearest and next nearest neighbor phonon spectra in the harmonic approximation and to an 
electron network model of diatomic crystals. The advantages of this technique are that it 
is completely crystal symmetry independent, does not require any root searching of frequency 
or energy ranges, and can be utilized irrespective of the nature of the force model employed. 
Excluding initialization, the computer code in the MATHSY array language available 
at the Lawrence Livermore Laboratory is only 15 lines long. 

In this note we shall briefly describe an accurate and simply applied algorithm for 
computing the joint density of states energy or frequency spectrum arising in solid 
state physics. The method is totally crystal symmetry independent, does not require 
any root searching or gradient computations, may be preset to any desired energy or 
frequency range, and can be utilized irrespective of the nature of force model employed. 

Related to a geometrical approach developed by Budgor and Poston [l, 21 and 
intuited by Leighton [3] and Faulkner et al. [4] this technique has the attractive feature 
of being able to visually examine the constant frequency or energy contours in the 
Brillouin zone from which the spectra are derived. Thus, the occurrence and location 
of spectral singularities can be predicted and verified by simultaneous comparison of 
contours with spectra. 

Methodologically, all we require are the elements of a dynamical frequency or 
connectivity energy matrix M(q), whose determinant equated to zero yields a dis- 
persion relation governing how the frequency or energy variables (denoted by X) are 
distributed in the Brillouin zone. For convenience we rescale the reciprocal lattice 
vector q = (ql , q2 , q3) so that the volume of the Brillouin zone is unity. We then 
subdivide the Brillouin zone into m equi-distant planes-i.e., q1 - q2 planes, q3 = 
constant-each containing its respective energy or frequency contours produced by 
the dispersion relation. The d&v-ential area method partitions a given preset x span, 
Xmin < x < xmax , into r intervals and performs the operation 

WI I x G+l) F det I Wq)l,, . det I Neil,,+, I = I,..., r + 1 

* Work performed under the auspices of the U. S. Department of Energy under contract NO. 
W-7405-Eng-48. 
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for each endpoint x = xc value on each plane. The planar density of states is by 
definition the differential area between curves of constant xz and x~+~ . Numerically 
this is equivalent to the integrated Brillouin zone area of sequential zero crossings of 
det j M(q)1 between these adjacent x values; geometrically it is proportional to the 
movement of those curves, The total number of zero crossings is sensed by P(xl , x~+~) 
and the spectrum value @xl+,) is approximately equal to the number of points for 
which P is negative (the distance between the zeros of the two factors in Eq. (1)) 
with D(x) the histogram of all D(xJ. This procedure for calculating D(x) can be 
shown to be numerically identical to the a-function representation for the density of 
states [6]. Figure 1 illustrates how D(xJ is computed. As this procedure is to be carried 
out for each plane, the composite D(x) is the cumulative sum of all planar D(x) spectra 
normalized to the Brillouin zone volume. This normalization is obtained upon 
multiplying each D(xr) by the factor [(n&J(m)(~~+~ - x1)1-l, n, and Q being, 
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FIG. 1. Illustration of how D(xJ is computed. Each qs plane of the Brillouin zone is partitioned 
into a number of q1 - qB - mesh size dependent boxes. Schematically, if curves A and B represent 
the factors of the product curve P (comprised on n grid points) for some I = t, then D(xJ is related 
to the distance between the sequential zero crossings of A and B within each q1 - q2 box. In this 
figure this occurs where P is negative and approximately equals the number of points, s < n say, 
at which it is negative. This approximation becomes more exact upon refinement of the qI - q2 mesh 
size. 
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SIMPLE CUBIC LATTICE FREQUENCY SPECTRA 

FIG. 2. Comparison of D(V) between the root surface (solid lined) and differential area (D-lined) 
methods for a simple cubic lattice with nearest and next-nearest neighbor force constants set at 
OL = 0.175 and y = 0.01875. D(V) is generated with 40~ values, 4Oq, values, and a 50 x 50 q1 - q2 
array. CPU times are 0.5 min. for the root surface method and 1.3 min. for the differential area 
method. 

respectively, the number of grid points into which q1 and q2 are subdivided. When 
M(q) is made up of a number of branches, this resultant D(x) is the combined or joint 
contribution from all branches. 

Figures 2-4 exhibit representative D(x) spectra for both a lattice vibration and a 
one-electron energy case. Example plane by plane contour developments from which 
these D(x) are derived are shown in Fig. 5. In the former example the phonon D(V) 
correspond to the cubic lattices with nearest and next-nearest neighbor spring con- 
stants in the harmonic approximation. The form of these spectra are already known 
[3, 51 and a much more extensive accounting of the details of the computation will be 
presented elsewhere [6, 71. The D-lined spectra in Figs. 2 and 3 were produced by the 
differential area method. They are compared with the solid lined spectra (root surface 
method) produced by analytically obtaining the individual branch spectra from the 
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FIG. 3. Comparison of D(v) between the root surface (solid lined) and differential area (D-lined) 
methods for a face centered cubic lattice with y/a = 0. Same initial mesh size data and CPU times 
as for Fig. 2. 

dispersion relations and summing their contributions [6, 71. Although both curves have 
exactly the same shape, the values of D(u) found by the differential area method are 
slightly lower than those found by the root surface method. This seems to result from 
the fact that the differential area method suffers from degeneracy error whenever 
points or lines from the same constant v-valued branches are coincident. As is apparent, 
however, with a fine enough v and Brillouin zone q mesh size, this error is not very 
great. CPU times for the differential area method are in general longer than those for 
the root surface method since complete q1 - q2 surfaces are generated for each vL 
value. 

Our second example of diatomic cubic lattices is derived from a one electron net- 
work bonding model of molecules and crystals in which the electrons are restricted 
to lie only along the bonds of the material [S, 91. If we further simplify this charac- 
terization and make these “bonds” one dimensional, then the electronic properties of 
our network model of “lines” and “point atoms” are topological in origin and are 
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FIG. 4. D(E) for a diatomic face centered cubic lattice with dispersion relation given by (6c). 
The well-depth parameters yI and ye are, respectively, y1 = 1 and yz = 0.5yl ; the bondlength I 
is 1 = 1. D(E) was generated with 1% values in the first band, 1OOE values in the second band, 4% 
values, and a 70 x 7Oq, - q2 array. The CPU time was 4.8 min. Note the occurrence of band gaps 
between energies 1.1 < E < 8.3 and 18.3 < E < 20. 

solely determined by the degree of “bonding” [lo, 111. We simulate bonding by 
choosing for our one electron atomic potential the bound “soliton” 

fi2y2 
V(x) = - 2m s(s + 1) sech2 yx 

which in its limiting forms embodies both the extremely localized Heitler-London 
and delocalized Bloch models. Thus, as the well-depth parameter y --f 0 V(x) reduces 
to the Sommerfeld free electron model and as y + co V(x) approaches a tight binding 
potential. y is, therefore, related to an effective mass and its variation permits descrip- 
tion leading from covalency to ionicity. Energy line and band spectra are derivable in 
a manner analogous to LCAO and tight binding computations which yields a form 
factor equation relating the amplitude of the wave function 4(j) of one atom at site 
j to its nj bonded atoms at sites j, , 

All the characteristics of the potential V(x) are embedded in F(k, y), which for a 
diatomic lattice has the form 
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where 

and 
a1 = 1 + (Yllk)2> 012 = 1 + b21Y2 

Fi = cos kl - (yi/k) sin kl tanh yil 

Gi = sin kl + (yi/k) cos kl tanh yil 

Hi = Gi + (yi/k)2 sin kl sech2 yil 
(5) 

Ki = Ff $ (yJk)2 cos kl sech2 yil 

In deriving (4) we have assumed a unit cell length of 21. k is a dimensionless energy 
parameter, k2 = 2mElh2. 

43 
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FIG. 5. Superposition of sets of q1 - q, planar slices for various values of q3 = constant. The 
Brillouin zone is being viewed slightly off the q,-axis. This permits 3 - D visualization of how the 
contours develop in q space. (a) Frequency contours for body centered cubic lattice; 15q, slices with 
q lying in [0, n] x [O, ?I] x [O, n/2]. 
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FIG. 5. (b) Energy contours for diatomic face centered cubic lattice; IOq, slices with q lying 
in [O, R] x [0, n] x [0, T]. 

Inserting (4) into the form factor eq. (3) with the appropriate crystal symmetry 
yields the electron connectivity matrix M(q). Band energies are obtained from the 
dispersion relation det 1 M(q)\ = 0; these for nearest neighbor simpIe cubic, body 
centered cubic, and face centered cubic are 

S.C. 3F = cos q1 + cos qz + cos q9 VW 

b.c. 3F = cos ql cos q2 cos qa @I 

Jc. 3F = cos q1 CDS q2 + cos q1 cos q3 + cos q2 cos q3 (64 

Although M(q) is a symmetrical matrix the manipulations leading to (5) do not 
involve a linear eigenvalue problem, as do the harmonic dynamical matrices and the 
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tight-binding electron connectivity matrices, since E(q) is related nonlinearly to the 
dispersion relations. Thus, in evaluating D(E) root-searching and moments methods 
are either impossible or very difficult to implement. This however, does not produce 
any problems for our method since only endpoint values of any E span, such as the 
E value at the bottom and top of any band, are required as input parameters. These 
values can be obtained either numerically (ascertaining those values of E for which 
F = i- 1) or their approximate locations can be determined by plotting F as a function 
of E. 

In closing we would like to mention that both the vibrational and electronic 
examples discussed were chosen since their dispersion relations were mathematically 
sufficiently complex to produce nontrivial D(x) spectra. It should be clear, however, 
that no matter how the x limits are found, for example the E limits from an APW 
or a muffin-tin calculation, or even from raw empirical data, one could easily employ 
the differential area method to yield an accurate D(x). Secondly, since exactly the 
same program operations, i.e., eq. (1) and subsequently counting the number of 
points for which P is negative, are performed regardless of the crystal symmetry, this 
technique is completely crystal symmetry independent. 

One final point on CPU times; for this particular example the differential area CPU 
time is slightly greater than the root surface CPU time since the three branches of 
the cubic lattice in the Brillouin zone are expressed analytically. For more complicated 
atomic or molecular crystals root surface or other root searching routines such as 
Gilat-Raubenheimer [12] CPU times dramatically increase while the CPU time for 
the differential area method will stay basically the same. This is due to the fact that the 
number of operations determining the number of negative points of (1) remain the 
same regardless of the size of the determinant. Thus, spectra derived from high order 
secular (or non-secular) determinants can be found as easily as the spectra for the 
cubic lattice problems studied in this note. The computer code used to produce both 
contours and spectra, excluding initialization, was written in the MATHSY array 
language which is available at the Lawrence Livermore Laboratory, and is 15 lines 
long. [6, 7, 131 All computations were performed on a CDC 7600. 
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